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Abstract The third law of thermodynamics is formulated precisely: all points of the state
space of zero temperature �0 are physically adiabatically inaccessible from the state space
of a simple system. In addition to implying the unattainability of absolute zero in finite time
(or “by a finite number of operations”), it admits as corollary, under a continuity assumption,
that all points of �0 are adiabatically equivalent. We argue that the third law is universally
valid for all macroscopic systems which obey the laws of quantum mechanics and/or quan-
tum field theory. We also briefly discuss why a precise formulation of the third law for black
holes remains an open problem.
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1 Introduction and Summary

In a nice review on black holes and thermodynamics [1], Wald remarks that there are two
completely independent statements referred to as the third law. “The first statement consists
of the rather vague claim that it is physically impossible to achieve T = 0 for a (sub) system.
The second statement, usually referred to as ‘Nernst’s theorem’, consists of the claim that
S(T ) → 0 as T → 0.” Above, T denotes the Kelvin temperature and S, the entropy.

The trouble with the second statement is that it is violated by several substances which
display a residual entropy per particle Sr as T → 0. The existence of a nonzero Sr has been
explained in a quite general framework (of quantum statistical mechanics) by the existence
of a ground state degeneracy which is exponentially large in the number of particles (but
the question of boundary conditions is very subtle) [2], and the actual value of Sr for ice
was calculated by Lieb in a seminal paper, yielding a value in excellent agreement with
experiment [3]. In [1, 4] it is stated that the second statement is also violated by black
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holes. We come back to this question briefly in Sect. 4, but warn the reader that the problem
remains open.

Finally, and perhaps most importantly, the second statement is motivated by statistical
mechanics, i.e., the formula

Sr = k lnW

where W denotes the ground state degeneracy: “normally” the ground state is nonde-
generate,1 thus W = 1, yielding Sr = 0 (see [2] for a rigorous discussion of these issues
in a class of lattice models). However, statistical mechanics should not be invoked when
one takes the standpoint that there exists a self-contained formalism—thermodynamics—of
which the third law should be an integral part, and which has a certain “universal applica-
bility” to a vast range of physical systems.

In this paper, we revisit the problem, and propose a precise thermodynamic statement of
the third law—the unattainability of the state space corresponding to zero temperature in a
finite number of steps. This is done in Sect. 2, on the basis of the framework introduced by
Lieb and Yngvason [7, 8] and of two assumptions, one of them of general nature (Assump-
tion 1), the other, a continuity assumption (Assumption 2), whose validity is expected for
a wide class of systems (exceptions are discussed ). In Sect. 2 we also show that the third
law implies a general result: all points of the state space corresponding to zero temperature
are adiabatically equivalent (Theorem 2.1: Planck’s formulation of Nernst’s theorem). All
substances, including those with Sr �= 0, should obey it. Examples of the latter are ice or
CH3D. A startling recent example is artificial “spin ice”, with Sr = 0.67R ln 2, close to the
value Sr = 0.71R ln 2 determined for ice [9].

Section 3 briefly discusses the known proof [10] that, generally speaking, the classical
limit which holds for the free energy of a very wide class of quantum spin systems by Lieb’s
classic paper [11], does not hold for the entropy. This obstruction seems to be at the heart
of the fact that the third law does not hold for classical systems in statistical mechanics.
We also conjecture that, for classical spin systems and (non-relativistic) classical particle
systems Assumption 2 (continuity) is universally not fulfilled, and illustrate it with two
examples.

Section 4 is devoted to the conclusion, open problems and conjectures. Among the open
problems, we briefly discuss the assertion in [4] that black holes do not satisfy the third law
in the form of Planck’s formulation (Theorem 2.1).

We refer to [12, 13] for the derivation of the fundamental laws of thermodynamics by a
different route, viz., from nonequilibrium quantum statistical mechanics, and to [14] for an
alternative treatment of the third law.

We believe that it is very significant that the sophisticated formulation of thermodynamics
by Lieb and Yngvason in [7, 8], suffices to provide a precise formulation of the third law,
with Planck’s formulation of Nernst’s theorem as corollary. The required mathematics is
elementary (see Theorem 2.1), but the clarification of the minimally required assumptions
within a mathematically rigorous framework greatly increases our confidence that the third
law is not a vague claim, but rather a universal law of nature, for systems which obey the
laws of quantum mechanics and/or quantum field theory.

1It is amusing to remark that, while Fermi considered an exponential degeneracy implausible [5], Pauli simply
states that W = 1 is an assumption, without further comment [6].
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2 Statement and Consequences of the Third Law

We adopt the precise formulation of thermodynamics due to Lieb and Yngvason [3] and
consider a simple system ([3], Sect. 3.2), with space of states �—a subset of Rn—and
points X ∈ �;X ≺ Y means that Y is adiabatically accessible from X in the sense of ([7, 8],
Def. p. 17) this definition does agree with the usual motion based on processes taking place

within an “adiabatic enclosure” ([7, 8], Theorem 3.8). If X ≺ Y and Y ≺ X, one says X
A∼ Y ,

i.e., X and Y are adiabatically equivalent. As remarked ([7, 8], p. 17), the word “adiabatic”
is sometimes used to mean “slow” or quasi-static, but not in the meaning ascribed to it by
the authors: “the explosion of a bomb in a closed container is an adiabatic process”. Further
examples include, of course, more commonly observed processes, such as natural processes
within an isolated compound system after some barriers have been removed-mixing and
chemical or nuclear processes.

One writes [7, 8]

X ≺≺ Y (1)

if X ≺ Y but Y ⊀ X, i.e., Y is adiabatically accessible from X “in the real world”. If (1) is
true we shall say that Y is physically adiabatically accessible from X (for lack of a better
name). Lieb and Yngvason remark that it is possible to redo their axiomatization of thermo-
dynamics using this latter concept, and we shall adopt this strategy, quoting this alternate
version of their results. It is, however, very important to stress that in [7, 8] the states of
a system are always equilibrium states, although, as remarked there, the equilibrium may
depend on internal barriers.

In ([7, 8], p. 19) the second law was formulated as the entropy principle:
There is a real valued function on all states of all systems (including compound systems),

called entropy and denoted by S, such that it is:
(a) monotone:

X
A∼ Y → S(X) = S(Y ) (2)

X ≺≺ Y → S(X) < S(Y ) (3)

(b) S is additive and extensive. The latter property may be written ([7, 8], 2.5)

S(tX) = tS(X) (4)

for each t > 0, each state X, and each scaled copy tX (see [7, 8], p. 15). It is noteworthy that
the entropy function satisfying (a) and (b) was constructed in [7, 8], and a unicity property
was shown there ([7, 8], Theorem 2.2, for a single system). Finally, at every point X in the
state space of a simple system, �, a function, the temperature T = T (X), exists, such that

thermal equilibrium X1
T∼ X2 (defined in [7, 8], p. 55) satisfies X1

T∼ X2iff T (X1) = T (X2),
which is single-valued and unique ([7, 8], Theorem 5.1), given by

1

T (X)
=

(
∂S

∂U

)
(X) (5)

where the energy U is defined in ([7, 8], p. 40).
By (5), 0 < T (X) < ∞, the points

T (X) = 0 (6)
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and T (X) = ∞ being singular points of the state space . Accordingly, we shall, for concise-
ness make the following assumptions:

Assumption 1 The state space � of the simple system is parametrized by � × IT , where
IT ≡ (0, T0], � is a (finite dimensional) set, “×” denotes Cartesian product, and T0 > 0. We
shall denote by Z the points of the set �.

Assumption 2 The entropy function S = S(Z,T ) may be uniquely extended to the closure
I T = [0, T0] of IT by continuity:

S(Z,0) ≡ lim
T →0+

S(Z,T ) ∀Z ∈ � (7)

Assumption 2 is assumption F of [14]. It implies and is implied by the vanishing of the
heat capacities CZ(T ) (when the latter exist):

lim
T →0+

CZ(T ) = lim
T →0+

[
T

(
∂S

∂T

)
Z

]
= lim

T →0+
[S(Z,T ) − S(Z,0)] = 0 (8)

by (7). The continuity assumption (7) is standard: indeed that is how the residual entropy Sr

obtained in [3] is compared with experiment, yielding perhaps the best comparison between
a theoretical an experimental value in thermodynamics. See also Sect. 3.

We shall refer to the set �0

�0 = {T = 0} × � (9)

as the zero temperature state space. We may now state the

Third Law The zero temperature state space �0 is (physically) adiabatically inaccessible
from any point of the state space of the simple system.

The main consequence of the third law is:

Theorem 2.1 (Planck’s Formulation of Nernst’s theorem) Under Assumptions 1 and 2, the
third law implies that all points of �0 are adiabatically equivalent (see (2)). As a conse-
quence, for a simple system in which the state space � is parametrized by (T ,V,N) , where
V is the volume and N the particle number, Sr is a universal constant, independent of the
specific volume V

N
.

Proof By the statement of the third law and (3),

S(Z,0) ≯ S(Z′, T1) ∀Z,Z′ ∈ �, ∀T1 > 0

and thus

S(Z,0) ≤ S(Z′, T1) ∀T1 > 0 (11a)

where Z,Z′ are arbitrary in �. Taking now, T1 → 0+ in (11a), and using (7), we find

S(Z,0) ≤ S(Z′,0) (12a)

Since Z and Z′ are arbitrary in �, we may invert the roles of Z and Z′ in (11a) to obtain

S(Z′,0) ≤ S(Z,T1) ∀T1 > 0 (11b)
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and, again taking T1 → 0+ in (11b) and using (7), we get

S(Z′,0) ≤ S(Z,0) (12b)

From (12a) and (12b)

S(Z′,0) = S(Z,0) (13)

which is the assertion of the theorem. It is to be noted that (13) amounts to Planck’s restate-
ment of the third law, which has been shown to be mandatory for homogeneous systems in
reference [14]. By extensivity (4), (13) is scale invariant. Thus we may restrict ourselves
in (13) to scale invariant variables Z, or, in other words, intensive variables Z. In terms of
the usual thermodynamic variables (V ,N,T ), with N the particle number and V the vol-
ume, taking the scaling factor t = 1

N
in (4), the residual entropy is written as Sr = 1

N
S( V

N
,0).

By (13), Sr is independent of the specific volume. This completes the proof. �

Remark 2.1 Relation

S(Z,0) = S(Z′, T1), Z,Z′ ∈ �, T1 > 0 (14)

is a possibility included in (11a). It means that the change (Z′, T1) → (Z,0) can only be per-
formed in an idealized sense, i.e., it takes infinite time, or an “infinite number of operations”.
It leads directly to (13), upon taking the limit T1 → 0+ using (7).

We may thus state the third law in the following alternative way: the zero temperature
state space is unattainable in a finite time (or in a finite number of steps).

We emphasize that (13) is not new (see, e,g., [15], p. 2, for a recent discussion). However,
for instance in Landsberg’s analysis [16, 17]), the unattainability law is seen to imply (13)
only under a thermodynamic stability assumption:

(∂S/∂T )Z > 0 ∀T > 0, ∀Z ∈ � (15)

See also the discussion in [15], and [18] for a discussion of the third law in a vein similar
to [16, 17]: in [18] the authors assume (14) (not stating that it is (part of) the thermodynamic
unattainability principle) and pretend to use (15) in an argument which turns out to be circu-
lar. In our approach, (15) does not, as we have seen, play any explicit role, although stability
conditions (concavity properties of the entropy) are essential for the construction of [7, 8].

On the other hand, in (7) there is implicit one of the assumptions in [17, 18], namely that

|S(Z,0)| < ∞ (16)

We believe that (16) is, however, universally violated in classical statistical mechanics, a
subject to which we now turn.

3 Applications to Statistical Mechanics

Let H
Q
N (J ) denote the Hamiltonian of a system of N spins of spin quantum number J . The

canonical quantum von Neumann entropy (β = 1/kT ) is

S
Q
N (B,T ;J ) = −kTr

(
δ

Q
N log δ

Q
N

)
(17a)
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with

δ
Q
N (J ) = e−βH

Q
N

(J )

Tre−βH
Q
N

(J )
(17b)

and the classical entropy is

SCl
N = −k

∫
d�NδCl

N (�N) log δCl
N (�N) (18a)

where

δCl
N (�N) = e−βHCl

N (�N)∫
d�Ne−βHCl

N
(�N )

(18b)

and d�N = ⊗N

i=1 d�i = (sin θidθidϕi)/4π is a normalized measure and �N ≡ (�i)
N
i=1,

�i ≡ (θi, ϕi).
By (17b)

δ
Q
N (J ) ≤ 1 ∀J < ∞ (19)

which implies, by (17a) and the elementary inequality

−x log(x) ≥ 0 if x ∈ [0,1] (20)

that

S
Q
N (B,T ;J ) ≥ 0 ∀J < ∞ (21)

Proposition 3.1 ([10], Prop. 1)

SCl
N ≤ 0 (22)

Proof Follows from convexity of the function x log(x)(x ≥ 0):

−x log(x) ≤ 1 − x (23)

�

An immediate corollary of (21) and (22) is

Corollary 3.1

lim
J→∞

lim
N→∞

S
Q
N

N
= lim

N→∞
1

N
SCl

N (24)

if the above limits exist.

By Lieb’s theorem on the classical limit of quantum spin systems [11], the limit at the
l.h.s. of (24) exists if S

Q
N is replaced by the quantum free energy, and it equals the limit on

the r.h.s. of (24) with SCl
N replaced by the classical free energy. The reason for (22) is that

the inequality (20), viz.,

δCl
N (�N) ≤ 1 (25)
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does not hold in general, because d�N in (18b) is not a discrete measure. Indeed, (25) must
be false at least for some values of T , otherwise (20) would yield a contradiction with (22) of
Proposition 3.1 by (18a). This phenomenon is, of course, well-known and has been remarked
in this context ([19], 2.1.6.2 p. 44, 2.26. p. 57). In this connection it may be remarked that
we may replace in (18b) HCl

N (�N) by

HCl
N (�N) − E0 (26)

where E0 = inf�N HCl
N (�N) denotes the ground state energy of HCl

N . Assuming the d�N

measure of the ground state configurations (26) to be zero leads us to guess, with the above-
mentioned replacement, that SCl

N , given by (18a), tends to −∞ as T → 0+. Since, however,
d�N is a continuous measure, a rigorous proof of this assertion requires a detailed analysis
of the d�N measure of configurations �N such that HCl

N (�N) − E0 ≤ 1/β which, as far as
we know, has not been done in general. We therefore content ourselves with the (very brief)
analysis of two simple models which, moreover, throw light on the existence/nonexistence of
the limits (24). The first model consists of N noninteracting quantum spins (of spin quantum
number J ) in an external magnetic field along the z-axis, described by the Hamiltonian
(B > 0):

H
Q
N (J ) = −B

N∑
i=1

(
Sz

J
+ 1

)
(27a)

where Sz
i is the z-component of a spin J quantum operator, together with the corresponding

assembly of classical rotors, with Hamilton function

HCl
N (θ) = −B

N∑
i=1

(cos θi + 1) θ ≡ (θi)
N
i=1 (27b)

where θi ∈ [0,π], i = 1, . . . ,N , and the additive constant in (27) is arbitrary. The corre-
sponding quantum entropy equals

S
Q
N (B,T ;J ) = k log

(
e2NβBeNβB/J − 1

) − k log
(
eNBβ/J − 1

)

− kβ
(2NB + NB/J )e2NβBeNβB/J

e2NβBeNβB/J − 1

+ kβNB/J
eNβB/J

e2NβB/J − 1
(27c)

and the classical entropy is given by

SCl(B,T ) ≡ 1

N
SCl

N (B,T )

= −1

2
kβB

(
coth

(
βB

2

)
+ 2

)
+ k log

4π

βB

+ 3kβB

2
+ k log

(
1 − e−βB

)
(27d)

from which:

lim
J→∞

lim
N→∞

S
Q
N (B,TiJ )

N
= 0 (27e)
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lim
N→∞

lim
J→∞

S
Q
N (B,TiJ )

N
= +∞ (27f)

Clearly, (27e) and (27f) confirm the result of Corollary 3.1, but (27f) shows further that
the limits N → ∞ and J → ∞ of the entropy per spin in general do not commute. In
order to show that the phenomenon exemplified in Corollary 3.1 is not restricted to free
(noninteracting) systems, consider the quantum ferromagnetic Heisenberg chain, with λ > 0

H̃
Q
N (J ) = − λ

J 2

N∑
i=1

Si · Si+1 (28a)

where Si ≡ (Sx
i , S

y

i , Sz
i ), i = 1, . . . ,N are (spin—J ) quantum operators, SN+1 = S1 (peri-

odic b.c.). The corresponding classical Heisenberg Hamiltonian is

H̃ Cl
N = −λ

N∑
i=1

SCl
i · SCl

i+1 (28b)

with SCl
i ≡ (sin θi cosϕi, sin θi sinϕi, cos θi), i = 1, . . . ,N . By Joyce’s result [20],

f (β) ≡ − lim
N→∞

β−1

N
log Z̃Cl

N = −β−1 log[sinh(βλ)/(βλ)] + 1

β
log(4π) (28c)

where

Z̃Cl
N =

∫
d�Ne−βH̃Cl

N (28d)

We have

SCl(T ) = lim
N→∞

1

N
SCl

N (T ) = − ∂f

∂T
= kβ2 ∂f

∂β
(28e)

by Griffiths’ lemma [21], because f is a concave function of T , and, by (28e) and (28c),

SCl(T ) = k(1 − log 8π) − k log(βλ) + c(β) (28f)

with c(β) → 0 as β → ∞. We thus have:

Proposition 3.2 For the examples (27a, 27b) and (28a, 27b),

lim
T →0+

lim
N→∞

1

N
SClN(T ) = lim

N→∞
lim

T →0+
1

N
SClN(T ) = −∞ (29)

The second line of (29) follows from (27d) and the analogue of (28f) for finite N .
We make some remarks on particle systems. For particle systems, the (physical) clas-

sical limit corresponds to the statement that the difference between quantum and classical
(infinite-volume) free energies is small if the thermal wavelength λ = (2π�2β/m)1/2 is small
with respect to the mean particle distance and to a characteristic length of the potential, i.e.,
the physical parameter which is varied is the inverse temperature β → 0. See [22] for rig-
orous results along this line. For the entropy, however, results are scarce: the high energy
limit of the microcanonical entropy is classical for a class of systems, as shown in appendix
of [22]. We thus expect that for particle systems the classical limit of the entropy coincides
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with the high temperature limit, and, therefore, Propositions 3.1 and 3.2 do not have an
immediate analogue. If one extrapolates, however, the entropy of the classical ideal gas to
T → 0+, it is well known that the analogue of (21) obtains (see [6] for comments). It is also
rigorously known from the seminal work of Lieb and Yngvason that, in the case of Bosons,
no semiclassical approximation can be valid for the ground state even in the limit of high
dilution [23]. Finally, Proposition 3.1 is also valid for particle systems [10].

Two conclusions may be drawn from this section. Firstly, Proposition 3.2 suggests that
Assumption 2 fails in an universal way for classical spin systems. Secondly, Corollary 3.1
shows that an obstruction exists in the classical limit regarding the entropy: the quantum
result does not join smoothly to the classical one. This seems to be the real reason why the
third law does not hold for classical systems, in the framework of statistical mechanics.

4 Conclusion, Open Problems and Conjectures

In this paper, we have formulated a precise version of the third law. Our basic assumption is
the continuity Assumption 2, which is expected to be valid for all systems obeying the laws
of quantum statistics. We conjecture that classical systems do not obey (16) of Assumption 2.
Although a general proof is missing, we were able to illustrate the conjecture with two
models, one of noninteracting, the other of interacting, classical spins in Sect. 3.

The vanishing, as T → 0, of derivatives of the entropy (when they exist) with respect to
variables Z ∈ �, e.g., ( ∂S

∂v
)T = ( ∂v

∂T
)p (experimentally well confirmed, see [24], pp. 58–62),

does not follow from Theorem 2.1. A thermodynamic proof of such relations remains, thus,
open. Theorem 2.1 suffices, however, to lend support to the physical picture implied by the
third law (see also Remark 2.1) in specific situations, e.g., the existence of a succession
of ever decreasing steps in the adiabatic demagnetization of paramagnetic crystals ([24],
Fig. 9.1).

We finally mention the controversial question of the third law for black holes, recently
reviewed in [15]. In [4] some quantum models of so-called extremal black holes (see the fol-
lowing (35)) violating Theorem 2.1 were constructed, on the basis of which it was attempted
to “lay to rest the ‘Nernst theorem’ as a law of thermodynamics”. By “thermodynamics”, in
the previous quotation, it was meant “conventional” and not, specifically, black-hole thermo-
dynamics. We should like to argue to the contrary, namely, that, in spite of having provided
a rigorous foundation for Nernst’s theorem, the problem of formulating the third law for
(Kerr) black holes remains open.

In order to be more precise, we consider the general case of a (classical) Kerr-Newman
black-hole of charge Q, angular momentum J and mass M , which is supposed to describe
the gravitational collapse of a rotating star, and for which the thermodynamic identity be-
comes (see [25] and references given there):

T dS = dM − �dJ − �dQ (30)

where � denotes the electric potential.
We assume

M2 ≥ a2 + Q2 (31a)

Let

a = J/M (31b)
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and

r± = M ±
√

M2 − a2 − Q2 (31c)

We have

r+ − r− = 2
√

M2 − a2 − Q2 (31d)

and the surface gravity

κ = r+ − r−
2α

(31e)

with

α = r2
+ + a2 = 2M2 + 2M

√
M2 − a2 − Q2 − Q2 (32a)

The area of the event horizon r = r+ is given by

A = 4πα (32b)

We take for the entropy the Bekenstein–Hawking result SB (see, e.g., [1]), which equals

SB = A

4
= πα (32c)

The angular velocity � of the black hole is

� = a

α
= a

r2+ + a2
(33)

Our black hole radiates like a black body of temperature

T = κ

2π
= r+ − r−

4απ
=

√
M2 − a2 − Q2

2πα
(34)

(the Bisognano–Wichmann–Hawking–Unruh effect, see [26] and references given there: this
a consequence of the behavior of quantum fields in the presence of an event horizon).

The limit T → 0+ corresponds by (31) to extremal black holes, i.e., the equality

M2 = a2 + Q2 (35)

holds in (31a). Physically, it represents the boundary of the instability region M2 < a2 +Q2,
which corresponds to very rapidly rotating bodies. For T in a fixed, sufficiently small (J,Q)

neighborhood of (0,0), it may be shown that one may solve the equation
(

∂M

∂SB

)
J,Q

= T (�= 0)

locally for SB , to obtain SB = SB(T ,J,Q). It is on this quantity that the limit T → 0+ is to
be performed, which, by (34), (32a) and (32c), yields:

lim
T →0+

SB(T ,J,Q) = π(2M(T = 0)2 − Q2)

= π(2a2 + Q2) = π

(
4J 2

Q2 + √
Q4 + 4J 2

+ Q2

)
> 0 (36)
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whenever (J,Q) �= (0,0).
This contradicts (13), because of the dependence of the r.h.s. of (36) on the remaining

variables (J,Q). Thus, the Kerr-Newman black hole provides an explicit example in which
Assumption 2 holds but Theorem 2.1 is violated. This violation, commented in [4] for the
special case Q = 0, does NOT, however, contradict the unattainability of the zero temper-
ature state (in the case of black holes, of the extremal region (35)) in finite time, because
our derivation of Theorem 2.1 from the third law (as stated in the present paper) ALSO fails
for (Kerr-Newman) black holes, for the following reasons: (a) the rigorous thermodynamic
framework of Lieb and Yngvason, on which we strongly relied, does not hold for black
holes because extensivity (4) is not valid for black holes (and gravitating systems in gen-
eral [19]); (b) for black holes the second law in the form (3) does not hold for SB , but rather
for SB +SM , where SM denotes the entropy of the total matter in the Universe (see, e.g., [1]
and references given there). This is important, because SB may decrease in an adiabatic
process.

It thus remains as a (challenging) open problem to devise for black holes a frame-
work, analogous to Lieb and Yngvason’s, from which the Beckenstein–Hawking entropy
SB emerges as the entropy function, fulfilling the second and the still-to-be formulated third
law.

We conclude with a few related conjectures. Due to the important role played by quan-
tum fields in black hole physics, apparent from the notion of temperature (34), the above-
mentioned framework should contemplate the thermodynamics of quantum fields, a subject
still in its infancy [27] ( for a rigorous approach to the supposedly related D-brane states,
see [28]). In particular, the vacuum fluctuations of the quantum fields at the horizon, leading
to the short-distance divergence of the area-density of localization entropy (a supposedly
quantum version of SB ) [29], may lead to a “discontinuity” between SB and the still-to-
be constructed quantum field theory from which black holes emerge in the classical limit,
perhaps analogous to the “obstruction” found in Sect. 3.
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